Supporting Information

Superhydrophobic and Omnidirectional Antireflective Surfaces from Nanostructured Ormosil Colloids

Adem Yildirim,1,2 Tural Khudiyev, 1,2 Bihter Daglar,1,2 Hulya Budunoglu, 1,2 Ali K. Okyay,1,2,3 and Mehmet Bayindir1,2,4*

1UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
2Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
3Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
4Department of Physics, Bilkent University, 06800 Ankara, Turkey

*Corresponding Author: E-mail: bayindir@nano.org.tr
Figure S1. Grain size distribution of the colloids. (a) TM 0, (b) TM 8, (c) TM 25, (d) TM 60. Increasing ratio of TMOS is resulting in a decrease in the average grain size of the colloids.
Figure S2. RMS roughness values of the coatings calculated based on three 10 x 10 µm² AFM images. As the TMOS ratio increases the surface roughness dramatically decreases.

Figure S3. (a) AFM image of the NPF 1 surface. (b) Static water contact angle of the surface.
Figure S4. FTIR spectra of TM 60 before and after the heat treatment at 450 °C.

Figure S5. High magnification SEM image of the three layer coating showing the highly porous structure.
Figure S6. Transmission characteristics obtained from FDTD simulations for (a) bare glass and (b) single side TM 60 coated glass substrates.